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COMPUTATION OF LOW SPEED VISCOUS FLOWS WITH HEAT ADDITION

AShvin Hosangadl and Charles L. Merkle

The Pennsylvania State University

Department of Mechanical Engineering
University Park, PA 16802

AFO SR.-7 . 88 - 0 468
ASTRACT The characteristics or time dependent schemes at

low Reynolds numbers have received less attention.
The use of Implicit time dependent schemes for Although the diffusion provided by the viscous terms

the numerical solution of low speed, low Reynolds should smooth the solution and provide enhanced
number flows with heat addition is investigated. oonvergence, their presence can slow convergence or

Stability analyses show that the errors introduced by even lead to divergence when approximate
approximate factorization give rise to instability at decompositions are used in conjunction with implicit
Reynolds numbers around 100. Specifically, it is the formulations. (The characteristics of approximately

cross-derivative errors between the viscous and factored
8
'
9 
methods are discussed herein a J compared

Inviscid terms that cause problems. When exact with results from direct Inversion procedures.) In
inversion techniques are used, the system becomes addition, the effects of inflow and outflow boundary
strongly stable and numerical experiments show rapid conditions are studied to determine their erfect onconvergence. Comparisons of outflow boundary convergence and solution accuracy as the Reynolds

conditions show that viscous and inviscid number is decreased.
formulations give Identical results over a vide range
of Reynolds numbers when buoyancy is omitted, but PROBLEM FORMULATION AND EOUATIONS O MOTION
with buoyancy presert the inviscid boundary
conditions are unstable. Flowfield results for a As a test problem, we use the flow through a

range of low Reynolds conditions with and without vertical constant area duct with specified volumetric
buoyancy are given to show the manner in which the heat addition to simulate laser absorption in a

rlowfJeld changes as these physical parameters are flowing gas
5
. To parameterize the probiem, the heat

varied. source, QH, is chosen as the algebraic function,

INTRODUCTION P P Min 12r
31 2 

- 3f-1. 11 (1)

Time dependent procedures have come to be the where,

accepted method for the numerical solution of
compressible flows. The strengths or these methods fix,y) - I(x-xa)

2 
+ (y-ya)

2 }/1(x-xb)
2 
- (y-yb)

21 (2)
arise because they are easily expressed In

generalized coordinates, they allow a single Here P is a scaling parameter Indicative of the
procedure to be used for either viscous or inviscid maximum heating rate and (xa , ya) and (xb, yb)

flows, and they allow the use of central differences specify the coordinates about which the symmetric
for the convective terms even when the invi3cid heat addition is centered and Its rate of decrease.

ecuations are considered. Their capabilities in For the present calculations, only the peak heating

inviscid flows make them particularly suitable for rate P was varied. Cross-sectional contours of the
the important class of high Reynolds number Viscous constant heat addition curves alone with the geometry
flows. Recent publications

1- 
have reported of the problem Is given In Fig. 1.

effective methods for extending these compressible
flow tecnniques to low Mach number conditions where The equations used to describe the very low

eleenvalue stiffness had heretofore precluded speed flows of Interest here are obtained by the same

convergence. The present paper looks at the Mach number expansion used in Ref. 4. Extension of
additional extension to low Reynolds number flows. this expansion to the viscous terms showm that the

The physical problem used to demonstrate the low viscous dissipation function In the energy equatinn

Reynolds number conditions is that of strong heat may be neglected leaving only teat conduction terms

addition in a constant area duct. The source of this on the right-hand side and leads to no
problem arises because of our Interest In the simplifications In the ripht-hand side of the

absorption or a laser beam by a flowing gas
5
. momentum equations. The reduced equations In

generalized coordinates become:

The impaired convergence of time dependent
schemes at low Mach number is known to arise because a t * aE * nF - H . (R * R a
or the stiffness or the eigenvalues and the singular t C n &n nV5
behavior of the pressure gradient. Preconditioning .

of the time derivatiIves
1 " 

has been shown to make the a n(Rn at R nn )JQ (3)
convergence rate independent of Mach number, but a

rescaling of the pressure is necessary4 to ensure The notation used for the Inviscid ternes is the same

convergence to tight tolerances at Mach numbers below as that or Ref. 4 while the viscous notation is
about 10

-
4. This rescaling Is best accomplished by a similar to that of Rer. 10 with the above-mentioned

perturbation expansion of the equations Of MotIon4,6, simplification. The source term H contains both the
The presence of the source term due to buoyancy has heat source term and the buoyancy term.
also been shown

7 
to require special treatment when

Froude numbers are small. To solve Eon. 3 we use Euler Implicit time
di ferencing for all terms except for the
cross-derivatives on the riht-hand sie, which are

dIfterenced explicitly. Central dirferencing in
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space Is used for both the convective and diffusive Thomas aigorithm. The result requlres considerable P
terms. The Implicit formulation gives rise to a machine storage but provides an extremely robust

large sparse, pentadlagonal matrix whose solution was solver as is noted below. For a two-dimensional

attempted by the approximate factorization technique problem, both storage and CPU time are primarily

as well as by an exact, direct inversion procedure. determined by the number of grid points In the
smaller direction. Experimental checks on a scalar

Approximate Factorization processing machine snowed that when 20 to 30 grid
points were used In one direction, the direct

The most common technique for solving implicit procedure gave converged solutions in about the same S
algorithms is the avproximate factorization procedure time as approximate factorization, albeit, at vastly
or Douglas and Gunn' . In this approach, the different convergence rates. Thus, a grid of 50 1 25

pentadlagonal matrix is approximated by two will require nominally the same time for the direct
tridiagonal matrices as, as for the AF procedure. More advanced sparse matrix

solution procedures
12 

are available which would

(S * Ata A - &t3 R a J)S
1  

reduce storage as compared with the present
tridiagonal procedure. These should also reduce the

(S + At3 nB - ta nR nnanJ)A - -AtR (4) CPU time requirement.

The advantage of the direct procedure is Its

where R is the residual of the operator in Eqn. 3 improved robustness and its rapid rate of convergence.

evaluated at the old time level, and S - I-Dat where Its robustness Is demonstrated by the fact that

D is the Jacoblan of H. Converged solutions are obtained for the present
problem, while appropriate procedures fall. Its

The approximate factorization is equivalent to rapid rate of convergence is most readily

solving the original differential operator in Eqn. 3 demonstrated by example. Figure 2 snows the

with an additive error WAF given by, convergence rate of tne direct procedure for the
present problem for a series of different CFL's. At

W (t
2
EaAa B 4 3 R aR R a J - a CFL of 5, the direct procecure converges at about

AF I nn n the same rate as an approximate factorization sciee.
(The optimum CFL for AF schemes Is around 5.) As CFL

- RE J B - & n A n is increased, the convergence rate accelerates

rapidly. At a CFL of 50, convergence to machine

Note this error includes terms or three kinds. There accuracy requires only 17 iterations and at 5000, It

are inviscid-inviscld operator products, is further reduced to 11 time steps. Tests with

viscous-viscous operator products and other grid sizes show that the rate of convergence is

viscous-inviscid operator products. The Independent or the number or grids or even of grid

inviscid-inviscid terms are the familiar ones from stretching although the time per iteration Is

the Euler equations. These are well known to slow strongly related to the number of grids. Finally,

convergence at high CFL's, but never cause comparison of the present rates of convergence for a

Instability or divergence. Similar comments hold for two-dimensional problem with those for a
the v'l3COU$-vi3COU3 error terma. In a pure diffusion one-dimensional problem show that the convergence

equation (no convection) these terms will slow rate is Independent of the dimensionality of the

convergence but the approximately factored scheme problem when direct inversion Is used. The normally

remains unconditionally stable. encountered slow-down In convergence rate In
multidimensions as compared to one dimension arises

The existence of an unconditionally stable because of approximate factorization errors.

factorization for the invlscid terms alone and for

the diffusion terms alone does not, however, Boundary Conditions

guarantee unconditional stability for the combined
viscous-inviscid system because of the The required boundary conditions for the present

viscous-invlscid error terms in Eqn. 5. Stability problem Include the specification of conditions on

analyses of the complete vector equations shows that the wall, on the axis Of symmetry and on the upstream
the viscous-inviscid error terms can be strongly and downstream boundaries. The boundary conditions

destabilizing at moderate (order one) Reynolds on the wall are the no-slip and adiabatic conditions.

numbers. At high or very low Reynolds numbers, these These three conditions are supplemented by an %

terms become negligible and have no effect. For our application of the normal momentum equation on the

specific problem, both stability analyses and wall which is applied by using one-sided differences

numerical experiments showed that approximate for the normal derivatives. At the center line,

factorization was unstable at Reynolds numbers below symmetry conditions are applied. Because these

500 when the stiffness was removed from the inviscid conditions are simple and their application is ,

terms. Making the inviscld operators stiff deferred straightforward, the details are omitted.

this Instability to lower Reynolds number, but the %
stiffness then caused unacceptably slow convergence. The boundary conditions at the Inlet and exit

Thus, approximate factorization of the low Mach are or more Interest. At hiCh Reynolds numbers where %

number equations falls at low Reynolds numbers. the flow is predominantly lnviscid, the use or
inviscld boundary procedures appears appropriate. As

Direct Solution Procedures the Reynolds number is decreased and viscous effects
begin to dominate, the arguments for viscous boundary

Analysis of the AT scheme reveals Its limited conditions become more compelling. The range of b

usefulness at low Reynolds numbers. To understand demarcation between these two types of boundary

the limitations Of the approximate procedure and to conditions Is not immediately apparent aid 0%

provide solutions to the problem of interest, we also conclusions are based on hindsight gained from

considered direct solutions of the operator in Eqn. 3. numerical experimentation.

For these solutions, the sparse pentadiagonal matrix

was partitioned as a block tridiagonal system which For the inviscid limit, we use the Method or

was then solved by the matrix version of the standard Characteristics (M O) procedure to determine the
number and type of boundary conditions. This theory

INN



makes It clear that the variable at the boundary becomes essentially uniform at a Reynolds number or 5.
must be determined from a combination of formal At the higher Reynolds numbers. tne reduced diffusion
boundary conditions augmented by a subset of the rates lead to steeper temperature gradients. with the
equations of motion. This rigorous understanding is heating effect being localized to the center or the
lost when viscous effects are present. In cases flow. The velocity profiles on Fig. 4 corroborate
where the Inertial terms dominate, we drop normal these inferences. The rapid diffusion at the low
diffusion gradients and apply the MOC procedures as Reynolds number Case leads to a parabolic, fully
though the 'low were inviscid. For the present developed profile. The temperature gradients at
problem, these procedures corresponded to specifying higher Reynolds numbers give rise to a fuller
the stagnation temperature, the stagnation pressure, profile, indicating a flow which is still developing.
and the flow adgle at the inflow boundary and tne
back pressure at the outflow boundary. The corresponding profiles with buoyancy

included are shown in Figs. 5 and 6. The buoyancy

For low Reynolds numbers, the procedure at the effect is negligible at Reynolds number 500, with the

downstream boundary was changed to reflect the temoerature and velocity profiles being almost
dominance of the viscous terms, but the lack of a Identical to the non-buoyant case, as can be seen by

rigorous procedure for determining the type of comparing Figs. 3 and 5 with Figs. 2 and 4. The
boundary conditions leads to some ambiguity as to how dramatic effect of buoyancy is, however, evident at
they are applied. The common assumption is that the two lover Reynolds numbers. The center of the

there will be one additional boundary condition for flow is accelerated due to heating, and the
each addition order of derivative. Thus, the four velocities at the centerline In dimensional form
boundary conditions of inviscid flow Increase to become comparable in magnitude to the velocity at

seven boundary conditions In viscous flow. In the Reynolds number 500.
present zalculations, the inviscid upstream boundary
conditions given above were retained (with the The sharp decrease in the rate of diffusion at

argument that we were treating slug flow at the these lower Reynolds numbers is reflected in the

inlet), and the downstream specification of pressure modest temperature rise at the wall. In contrast to
was augmented by setting these second derivatives to the non-buoyant case, the temperature profile with

zero, buoyancy at a Reynolds number of 5 Is now highly
non-uniform. The velocity profiles also differ quite

u v - T - 0 (6) strongly from the fully developed profiles in the
non-buoyant flow. A fairly wide region near the wall

so that four boundary conditions were specified at has very low velocities with a tendency for flow

the outflow boundary. 
reversal.

RESULTS AND DISCUSSION CONCLUSIONS

All results presented are based on the direct Time dependent numerical algorithms were tested S

solution procedure. The comparison of viscous and for low Mach number, low Reynolds number flows with
and without buoyancy. Results show that approximate

inviscid boundary conditions is discussed first.fatrzintehqusdnocnvgeoraesfIntuitive reasoning Would Suggest that the Inviscld factorization techniques do not converge for cases or
boundary conditions would hold at very high Reynolds Interest. Stability analyses of these schemes

numbers while the viscous boundary conditions would Indicate that the reason for the impaired performance
numbies whilate volios bounry conditos w d is the hybrid At

2 
error term that arises from the

provide accurate solutions at very low Reynolds product of viscous and inviscio derivatives.

numbers. It would be hoped that both sets of Stability analyses for the unfactored algorithm

boundary conditions would provide similar results for Indicate unconditional stability for all time step

a range of Intermediate Reynolds numbers. To sizes, and suggest that very large At's will give

ascertain the behavior of these boundary conditions. maximum convergence when direct inversion procedures
numerical experiments were run at Reynolds numbers of are used. The robustness of the direct inversion

5. 50 and 500. In the absence of buoyancy, both sets routine reinforces the Inference that the instability
or boundary conditions gave similar convergence and encountered at low Reynolds numbers is because of tne
similar solutions (the solutions were approximate factorization.

indistinguishable on a plot) at all three Reynolds
numbers. In the presence of buoyancy, all attempts Calculations with both inviscid and viscous

with the inviscid boundary conditions diverged at boundary conditions at the outflow boundary show a

Reynolds numbers below 500 for high heat addition, broad region of overlap in the ranges of apoltcation

but the viscous boundary conditions provided for the two procedures where buoyancy is absent. In
effective convergence. As is shown later, the effectofboacy1 lot elgbe tRyodsnmes the presence Or buoyancy. the inviscid boundary
of buoyancy is almost negligible at Reynolds numbers conditions failed to provide solutions In Reynolds

above 500 and becomes increasingly dominant at lower number ranges where buoyant effects were significant.
Reynolds numbers. (Recall, Reynolds number is being The reason for this was traced to a tendency for
controlled by changing the velocity.) reentry flow near the wall at the exit plane.

Flowfield results for the duct flow with heat Flowfield solutions show that buoyancy begins to
addition area given in Figs. 3-6. Results are dominate at a Reynolds numner of about 500. The body

presented for calculations with and without buoyancy, force due to buoyancy causes the velocity on the
the Prandtl number being held constant at 0.7 for all centerline to increase as compared with the

Cases. non-buoyant calculations and this increased speed

decreases the heat flux to the walls.P
Figures 3 and 0 present the temperature and

velocity profiles at the exit for the non-buoyant ANOWLCEENT

case at Reynolds number of 5, 50 and 500. In the
aosence of buoyancy the heat source has a passive This work was sonsored by the Ai Fcrce Office
behavior that only causes an expansion of the Fas. of Scientific Research under Contract AFOcR c-Ori.

Low velocities abet the rapid difrusion of heat from o -

the centerlIne to the wall, so that the temperature

00 c
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